THERMODYNAMIC STUDY OF THE COMPLEXATION OF 1,6-DIHYDRO-1-METHYL-2-METHYLTHIO-5-NITROSO-6-OXO-4-XYLOPYRANOSYLAMINOPYRIMIDINE WITH SOME METAL IONS

R. LÓPEZ GARZÓN *, E. CAZALILLA CANTERO, M.D. GUTIERREZ VALERO, M. NOGUERAS MONTIEL, A. SÁNCHEZ RODRIGO and M.L. QUIJANO LOPEZ

Department of Inorganic and Organic Chemistry, University College, 23071-Jaén (Spain) (Received 24 July 1989)

ABSTRACT

The acidic constant of 1,6-dihydro-1-methyl-2-methylthio-5-nitroso-6-oxo-4-xylopyranosylaminopyrimidine and the formation constants of its $[ML^-]^+$ and $[ML_2]$ complexes $(M \equiv Mn(II), Fe(II), Co(II), Ni(II), Cu(II)$ and Zn(II)) at variable ionic strengths and temperatures, were determined and their values compared with those of 4-amino-1,6-dihydro-1-methyl-2-methylthio-5-nitroso-6-oxo-pyrimidine.

INTRODUCTION

The interest in the study of metal complexes of heterocyclic thione compounds stems from the biological activity of many of them [1]. The bacteriostatic activity of some thione imidazoline, thiazoline and pyridine thione derivatives has been related to their coordination ability [2,3]. Other thione derivatives have thyrotoxic [4], anti-convulsant or central-nervous-system depressant capacity [5]. Moreover, the carcinostatic activity of some of their heavy metal complexes has been reported [6], e.g. a platinum pyridine thione complex has been patented for use in cancer treatment [7].

Thiopyrimidine derivatives are also very important heterocyclic compounds because of their wide range of biological activity, e.g. some of them can act as inhibitors [8,9] and anti-metabolites [10,11], whereas 2thiopyrimidine shows a strong in vitro bacteriostatic activity on *E. coli* [12]. 6-amino-2-thiouracil is well known for its anti-viral [13] and chemi-therapeutic activities [13–15]. In many of these cases, it seems probable that metal complexes are formed in their biological action mechanisms [16].

In view of the above, we are interested in the study of the complex formation processes between metal ions and 2-methylthiopyrimidine deriva-

^{*} Author to whom correspondence should be addressed.

tives, on which several papers have been previously published [17–26]. In continuation of these, the present paper reports the study of the acidic character of the compound 1,6-dihydro-1-methyl-2-methylthio-5-nitroso-6-oxo-4-xylopyranosylaminopyrimidine (L–H), as well as the study of the interactions of the anion L^- with some bivalent ions from the first row of the transition elements (Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)).

EXPERIMENTAL

Reagents

The compound 1,6-dihydro-1-methyl-2-methylthio-5-nitroso-6-oxo-4xylopyranosylaminopyrimidine (L-H) was prepared by a previously reported method [27]; the sample obtained was water-recrystallised several times and dried over P_4O_{10} ; the analytical data of the sample were in accordance with the formula of anhydrous L-H. All the remaining chemicals used were commercial analytical grade reagents. Solutions were prepared in double distilled, carbon-dioxide-free water.

Solutions of 10^{-3} M L-H were prepared by diluting a 2×10^{-3} M solution of the compound previously prepared by direct weighing from the pure solid sample, and were then used for potentiometric titrations of the ligand. Potentiometric titrations of solutions of L-H/M(II) systems in which L-H is 10^{-3} M and [L-H]: [M(II)] = 2 were also made. To prepare these, 5×10^{-2} M solutions of Mn(II) (chloride), Fe(II) (Mhor's salt), Co(II), Ni(II), Cu(II) and Zn(II) (nitrates) were prepared by diluting suitable volumes of previously prepared and standardized 0.5 M solutions.

To maintain the ionic strength at the appropriate values, a 1 M standardized KCl solution was used in all cases.

0.01 M carbonate-free NaOH solutions were used as titrating agent for all L-H and L-H/M(II) solutions.

Apparatus and methods

UV spectra of L-H solutions at different pH values were obtained using a Spectronic 2000 spectrophotometer.

All the potentiometric titrations were carried out under nitrogen atmosphere using a Radiometer TTT60 pH-meter fitted with glass and calomel electrodes.

To study the acidic character of L-H, 25 ml of a 10^{-3} M solution of this compound were titrated against standardized 0.01 M NaOH solutions. Similarly, 25 ml of solutions containing L-H/M(II) systems in which [L-H]:[M(II)] = 2 (L-H = 10^{-3} M) were also titrated against standardized 0.01 M NaOH solutions, in order to obtain the apparent formation con-

stants of the complexes. The ionic strength and temperature were adjusted in each case to the appropriate value.

RESULTS AND DISCUSSION

TABLE 1

The spectroscopic data (IR and ¹H-NMR spectra) demonstrate that the compound is to be found (either as a solid or in DMSO-d₆ solutions) in the keto-amino tautomeric form [24].

The UV spectrum of an aqueous solution of L-H is very much like that of 4-amino-1,6-dihydro-1-methyl-2-methylthio-5-nitroso-6-oxo-pyrimidine (A-H). Therefore, the absorption bands at 350 nm ($\epsilon = 18\,000\,1\,\text{mol}^{-1}\,\text{cm}^{-1}$), 285 nm (shoulder, $\epsilon = 5400\,1\,\text{mol}^{-1}\,\text{cm}^{-1}$), 235 nm (shoulder, $\epsilon = 6600\,1\,\text{mol}^{-1}\,\text{cm}^{-1}$) and 216 nm ($\epsilon = 14400\,1\,\text{mol}^{-1}\,\text{cm}^{-1}$) are all assignable to $\pi \to \pi^*$ transitions [28,29].

The different UV spectra obtained when the pH of an L-H solution varies define an isosbestic point at 237 nm, which occurs at pH values higher than 10.25 (as well as in the case of A-H [17]), which is due to the deprotonation of the NH group, this being in accordance with the above proposed keto-amino tautomeric structure.

The apparent deprotonation constants of L-H at variable ionic strengths and temperatures, appearing in Table 1, were obtained by applying Bjerrum's method [30] to the pH titration data of the L-H solutions. These values (k_a) were calculated from the plots of \bar{n} (the average number of L⁻ molecules linked to the protons) versus pH, by interpolating at $\bar{n} = 0.5$, and are about ten times lower than those corresponding to the compound A-H; this compound differs structurally from L-H in the absence of the xylosydic residue. Thus, the difference in k_a values of the two compounds could be due to the inductive effect of the glyosydic residue on the C4-NH group which would enhance the covalent character of the N-H bond.

$I \pmod{1}$	<i>T</i> (°C)	pK _a			
0.01	25	10.80			
0.03	25	10.90			
0.06	25	10.82			
0.10	25	10.85			
0.20	25	11.02			
0.10	20	10.95			
0.10	30	10.77			
0.10	35	10.62			
0.10	40	10.42			

Ionization constants of L-H at different ionic strengths (KCl) and temperatures

Metal ion	$I \pmod{l^{-1}}$	<i>T</i> (°C)	$\log k_1$	$\log k_2$	$\log \beta_2$
Mn(II)	0.01	25	5.23	5.05	10.28
	0.03	25	5.10	4.90	9.90
	0.06	25	5.35	4.79	10.44
	0.10	25	5.25	4.75	10.00
	0.20	25	5.36	4.70	10.06
	0.10	20	6.77	4.70	11. 4 7
	0.10	30	5.57	4.67	10.24
	0.10	35	5.35	4.68	10.03
	0.10	40	4.45	4.63	9.08
Fe(II)	0.01	25	8.40	8.37	16.74
()	0.03	25	8.37	8.32	16.72
	0.06	25	8.32	8.28	16.60
	0.10	25	8 24	8 30	16.64
	0.20	25	8 22	8.07	16.29
	0.10	20	8 37	8 33	16.60
	0.10	30	8 34	818	16.50
	0.10	35	8 25	8.06	16.32
	0.10	40	7.96	8.00	15.98
0.00	0.10		7.50	6.62	10.00
Co(11)	0.01	25	7.32	6.58	13.90
	0.03	25	7.25	6.50	13.75
	0.06	25	7.08	6.46	13.54
	0.10	25	7.14	6.40	13.40
	0.20	25	6.60	6.30	12.85
	0.10	20	_ ^a	_ a	_ ^a
	0.10	30	7.00	6.41	13.55
	0.10	35	6.72	6.35	13.07
	0.10	40	6.60	6.22	12.82
Ni(II)	0.01	25	6.92	6.15	13.07
	0.03	25	6.90	6.12	13.02
	0.06	25	6.78	6.10	12.88
	0.10	25	6.72	5.92	12.64
	0.20	25	6.62	5.90	12.52
	0.10	20	6.73	5.97	12.70
	0.10	30	6.55	5.85	12.40
	0.10	35	6.44	5.74	12.18
	0.10	40	6.22	5.59	11.81
Cu(II)	0.01	25	9.10	8.70	17.80
	0.03	25	9.06	8.78	17.84
	0.06	25	8.92	8.74	17.66
	0.10	25	8.88	8.64	17.52
	0.20	25	8.80	8.54	17.34
	0.10	20	8.96	8.70	17.66
	0.10	30	8.84	8.60	17.44
	0.10	35	8.56	8.20	16.76
	0.10	40	8.46	8.06	16.52

Stability constants of 1,6-dihydro-1-methyl-2-methylthio-5-nitroso-6-oxo-4-xylopyranosylaminopyrimidine complexes with Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)

TABLE 2

Metal ion	$I \pmod{1^{-1}}$	<i>T</i> (°C)	$\log k_1$	$\log k_2$	$\log \beta_2$
Zn(II)	0.01	25	6.75	6.66	13.41
. ,	0.03	25	6.48	6.52	13.00
	0.06	25	6.45	6.47	12.92
	0.10	25	6.42	6.43	12.87
	0.20	25	6.41	6.42	12.90
	0.10	20	6.56	6.46	13.20
	0.10	30	6.50	6.46	12.96
	0.10	35	6.46	6.47	12.93
	0.10	40	6.30	6.40	12.70

TABLE 2 (continued)

^a Complex formation is not detected at this temperature.

The k_a values of L-H, are practically unaffected by ionic strength but undergo a slight increase with temperature. In fact, the values define a straight line when plotted against 1/T (the apparent thermodynamic constants for the deprotonation process are found to be: $\Delta H = -55.52$ kJ mol⁻¹ and $\Delta S = -21.42$ J K⁻¹ mol⁻¹).

These k_a values were used to calculate the apparent formation constants corresponding to the processes

$$M(II) + L^{-} \rightleftharpoons ML^{-+}, \qquad k_1 = [ML]^{+} / [M(II)][L^{-}]$$

and

$$ML^{-+} + L^{-} \rightleftharpoons ML_{2}, \qquad k_{2} = [ML_{2}]/[ML^{-}]^{+}[L^{-}],$$

for which the Chaberek and Martell method was used [31]. From the potentiometric data, the formation curves are obtained by plotting \bar{n} (the average number of ligand molecules, L⁻, linked to each metal ion) against pL. In all cases the curves level off at about n = 1.8, which suggests that the highest species formed in solution is ML₂. Thus, the apparent formation constants of $[ML^-]^+$, k_1 , and $[ML_2]$, k_2 , were obtained by interpolating, in the formation curves, the ordinates corresponding to $\bar{n} = 0.5$ and $\bar{n} = 1.5$, respectively; their values are summarized in Table 2, together with the overall apparent formation constants, β_2 . The values of k_1 , k_2 and β_2 decrease slightly when the ionic strength increases due to a higher intensity in the solvation of M(II) ions which inhibits metal-ligand interactions.

For all the systems, the linearity in the plots of log k_1 and log k_2 versus \sqrt{I} was demonstrated by the least squares method (Fig. 1). This enabled us to calculate the values of the thermodynamic formation constants appearing in Table 3 by application of the Debye-Hückel limiting equation for weak 1/1 electrolytes (log $k_c = \log k + c\sqrt{I}$, where k_c are the apparent constants and k, the thermodynamic ones). Comparing these values with the corresponding values for similar complexes of the compound A-H, it can be seen that the sequence of the thermodynamic constant values are similar for the two

1/T x 1000(1/K)

Fig. 1. Plots of (a) log k_1 and (b) log k_2 versus \sqrt{I} for L-H---M(II) complexes at 25°C.

compounds [32]; that is, Mn(II) < Fe(II) > Co(II) > Ni(II) < Cu(II) which suggests that in complexes with the same metal ion the coordination of the two organic bases is similar (thus, this shows that the OH groups of the

TABLE 3

Metal ion	$\log k_1$	$\log k_2$	$\log \beta_2$	$-\Delta G_1$	$-\Delta G_2$	$-\Delta \overline{G}$
Mn(II)	5.20	5.09	10.29	29.67	29.04	58.72
Fe(II)	8.45	8.47	16.92	48.22	48.33	96.55
Co(II)	7.51	6.65	14.16	42.85	37.95	80.80
Ni(II)	7.02	6.25	13.27	40.06	35.66	75.72
Cu(II)	9.18	8.83	18.01	52.38	50.38	102.77
Zn(II)	6.71	6.66	13.37	38.29	38.00	76.29

Thermodynamic stability constants and free energy (kJ mol⁻¹) of metal ion-LH complexes at 25 $^{\circ}\mathrm{C}$

glycosydic rest in L-H do not act as donors). Nevertheless, the great variability in the possible mode of coordination of the A-H and L-H bases (the potential donor groups in both compounds are: C2-SCH₃, N3, C4-NH, C5-NO and C6=O, as well as the OH groups of the xylosydic residue in the case of L-H) is confirmed by the fact that neither k_1 nor k_2 values follow the Irving-Williams rule; in fact, structural studies on solid complexes of these bases have demonstrated the coordination mode is very variable [24,33].

In addition, the values of the thermodynamic constants of the L-H complexes are considerably higher than those in the corresponding A-H ones (between 10^2 and 10^3 times higher for the former base); thus, in spite of the similar structures of complexes with the same cation but different base, the formation energies of L-H complexes are higher than those of A-H, probably due to the role played by the OH groups of the glycosydic rest in the formation of strong intramolecular hydrogen bridges stabilizing the L-H-metal chelates; although the inductive effect of the glycosydic rest on the pyrimidine could enhance the basicity of the donor atoms of L⁻, this also results in an enhancement of the complex stability.

The apparent ΔH and ΔS values for the formation processes let us compare the thermodynamic behaviour of the different L-H/M(II) systems. The values, summarized in Table 4, were obtained from the apparent formation constants at different temperatures. The plots of log k_1 and log k_2 versus 1/T are straight lines in all cases, as proved by the least square method (Fig. 2); this enabled us to obtain the apparent ΔH and ΔS values on the basis of the equation log $k = -\Delta H/2.303RT + \Delta S/R$.

When ΔS values for L⁻---M(II) complexation processes are compared with those for A⁻---M(II) [32], it is clear that the first are considerably lower than the second, which is probably due to the ability of the glycosydic rest of the L⁻-coordinated molecules to intervene in the formation of inter-(as well as intra-) molecular hydrogen bridges which inhibits the enhancement of the disorder accompanying the complexation processes (due to the ionic atmosphere around the metal ion). On the other hand, the L-H---

Fig. 2. Plots of (a) log k_1 and (b) log k_2 versus 1/T for L-H---M(II) complexes at 0.1 M (KCI) ionic strength.

TABLE 4

Metal ion	ΔH_1	ΔH_2	ΔH	ΔS_1	ΔS_2	ΔS
Mn(II)	- 119.31	2.64	- 116.67	- 293.03	98.11	- 194.92
Fe(II)	-28.30	- 29.92	- 58.22	64.01	57.78	121.79
Co(II)	-64.52	- 20.49	-85.01	- 79.84	54.39	- 25.45
Ni(II)	-45.52	- 32.79	-78.31	-25.22	3.04	-22.18
Cu(II)	-45.78	- 59.69	- 105.47	16.18	- 35.50	- 19.32
Zn(II)	- 16.69	-2.82	- 19.51	68.57	114.08	182.65

Enthalpy (kJ mol⁻¹) and entropy (J mol⁻¹K⁻¹) changes of metal-LH complexes at 0.1 M ionic strength

M(II) complexation processes are all exothermic (except that corresponding to the formation of $[MnL_2]$ which is slightly endothermic), the ΔH values being more widely spread than those corresponding to the A-H---M(II) complexation processes. This shows that the enthalpy (which is related to the strength of the formed L⁻-M bonds) is mainly responsible for the L-H---M(II) complexation processes and supports the above-mentioned probable role of the intramolecular hydrogen bridges of the OH groups of the glycosydic rest in the stability of the formed chelates.

REFERENCES

- 1 E.S. Raper, Coord. Chem. Rev., 61 (1985) 115.
- 2 W.O. Foye and J.R. Lo, J. Pharm. Sci., 61 (1972) 1209.
- 3 United States Patent: U.S.3590035 (710629), British Patent: G.B.1202716 (700819), French Patent: FR1506349 (671222).
- 4 Martindate Extra Phanmacopoeia, Pharmaceutical Press, London, 27th edn., 1972.
- 5 H. Kohn, B.A. Kohn, M.L. Steenberg and J.P. Buckley, J. Med. Chem., 20 (1977) 158.
- 6 J. Dehand, J. Jordanov and J.P. Beck, Chem.-Biol. Interactions, 11 (1975) 605.
- 7 Japanese Patent: JP8061522 (800509).
- 8 E.B. Astwood, A. Bissell and A.M. Hughes, Endocrinology, 37 (1945) 456.
- 9 R.K. Robins, J. Med. Chem., 7 (1964) 186.
- 10 R. Hamers and C. Hamer Casterman, J. Mol. Biol., 3 (1972) 166.
- 11 W.R. Trotter, Nature, 164 (1949) 63.
- 12 A. Holy, I. Votruba and K. Jost, Coll. Czech. Chem. Commun., 39 (1974) 634.
- 13 V.N. Krishna Murthy, K.V. Nageswara Rao, P.L. Narasimha Rao and B. Praphulla, Br. J. Pharmacol. Chemother., 31 (1967) 1.
- 14 R. Truhaut and M. Declercq, Rev. Ranc. Etudes Clin. Biol., 7 (1962) 68.
- 15 R.H. Lindsay, H. Nakagawa and P. Philipcohen, Endocrinology, 76 (1965) 728.
- 16 D.H. Petering, W.E. Antholine and L.A. Saryan, Metal Complexes as Antitumor Agents in Anticancer and Interferon Agents, Vol. 24, Ch. 7, M. Dekker, New York, 1984.
- 17 C. Valenzuela Calahorro, J.D. Lopez González, R. López Garzón and M. Melgarejo Sampedro, An. Quim., 77B (1981) 143.
- 18 C. Valenzuela Calahorro, J.D. Lopez González and R. López Garzón, An. Quím., 78B (1982) 184; C. Valenzuela Calahorro, J.D. López González and R. López Garzón, Rev. Acad. Cien. Gran., 2 (1983) 123.

- 19 M.P. Sánchez Sánchez, J.M. Salas Peregrín, M.A. Romero Molina and E. Colacio Rodríguez, Thermochim. Acta, 89 (1985) 165.
- 20 M.P. Sánchez Sánchez, J.M. Salas Peregrín, M.A. Romero Molina and J. Ruiz Sánchez, J. Therm. Anal., 31 (1986) 573.
- 21 J.M. Salas Peregrín, M.A. Romero Molina, E. Colacio Rodríguez and R. López Garzón, An. Quím., 80B (1984) 465.
- 22 A.M. Martínez Garzón, R. López Garzón and M.N. Moreno Carretero, Thermochim. Acta, 80 (1984) 143.
- 23 M.N. Moreno Carretero, A.M. Martínez Garzón, R. López Garzón and J.M. Salas Peregrín, Rev. Chim. Minér., 22 (1985) 369.
- 24 R. López Garzón, M.D. Gutierrez Valero, M. Nogueras Montiel, A. Sánchez Rodrigo and C. Valenzuela Calahorro, Monatsh. Chem., 117 (1986) 905.
- 25 M.A. Romero Molina, J.M. Salas Peregrín, R. López Garzón and M.D. Gutierrez Valero, Polyhedron, 7 (1988) 659.
- 26 M.A. Romero Molina, M.D. Gutierrez Valero, R. López Garzón and J.M. Salas Peregrín, Inorg. Chim. Acta, 136 (1987) 87.
- 27 A. Sánchez, M. Nogueras, M. Melgarejo, C. Rodríguez, M. Rodríguez and R. Asenjo, An. Quím, 80C (1984) 234.
- 28 D.J. Pasto and C.R. Jhonson, Determinación de Estructuras Orgánicas, Ed. Reverté, Barcelona, 1977.
- 29 C. Parkanyi, D. Banim, D.C. Shieh, S. Tunbrant, J.J. Aason and A. Tine, J. Chim. Phys., 81 (1984) 3099.
- 30 J. Bjerrum, Metal Ammine Formation in Aqueous Solution, Haase, Copenhagen, 1941.
- 31 S. Chaberek and A.E. Martell, J. Am. Chem. Soc., 74 (1952) 5052.
- 32 R. López, A. Martínez, M.D. Gutierrez and M. Domingo, Thermochím. Acta, 108 (1986) 181.
- 33 C. Valenzuela, J.D. López and R. López, An. Quím., 79B (1983) 467.